Dopamine quinone formation and protein modification associated with the striatal neurotoxicity of methamphetamine: evidence against a role for extracellular dopamine.
نویسندگان
چکیده
Methamphetamine-induced toxicity has been shown to require striatal dopamine and to involve mechanisms associated with oxidative stress. Dopamine is a reactive molecule that can oxidize to form free radicals and reactive quinones. Although this has been suggested to contribute to the mechanism of toxicity, the oxidation of dopamine has never been directly measured after methamphetamine exposure. In this study we sought to determine whether methamphetamine-induced toxicity is associated with the oxidation of dopamine by measuring the binding of dopamine quinones to cysteinyl residues on protein. We observed that administration of neurotoxic doses of methamphetamine to rats resulted in a two- to threefold increase in protein cysteinyl-dopamine in the striatum 2, 4, and 8 hr after treatment. When methamphetamine was administered at an ambient temperature of 5 degreesC, no increase in dopamine oxidation products was observed, and toxicity was prevented. Furthermore, as shown by striatal microdialysis, animals treated with methamphetamine at 5 degreesC showed DA release identical to that of animals treated at room temperature. These data suggest that the toxicity of methamphetamine and the associated increase in dopamine oxidation are not exclusively the result of increases in extracellular dopamine. Because dopamine-induced modifications of protein structure and function may result in cellular toxicity, it is likely that dopamine oxidation contributes to methamphetamine-induced toxicity to dopamine terminals, adding support to the role of dopamine and the evidence of oxidative stress in this lesion model.
منابع مشابه
Role of dopamine transporter in methamphetamine-induced neurotoxicity: evidence from mice lacking the transporter.
The role of the dopamine transporter (DAT) in mediating the neurotoxic effects of methamphetamine (METH) was tested in mice lacking DAT. Dopamine (DA) and serotonin (5-HT) content, glial fibrillary acidic protein (GFAP) expression, and free radical formation were assessed as markers of METH neurotoxicity in the striatum and/or hippocampus of wild-type, heterozygote, and homozygote (DAT -/-) mic...
متن کاملMethamphetamine-induced dopaminergic neurotoxicity is regulated by quinone-formation-related molecules.
Recently, the neurotoxicity of dopamine (DA) quinone formation by auto-oxidation of DA has focused on dopaminergic neuron-specific oxidative stress. In the present study, we examined DA quinone formation in methamphetamine (METH)-induced dopaminergic neuronal cell death using METH-treated dopaminergic cultured CATH.a cells and METH-injected mouse brain. In CATH.a cells, METH treatment dose-depe...
متن کاملCyclooxygenase-2 is an obligatory factor in methamphetamine-induced neurotoxicity.
Methamphetamine causes persistent damage to dopamine nerve endings of the striatum. The mechanisms underlying its neurotoxicity are not fully understood, but considerable evidence points to oxidative stress as a probable mechanism. A recent microarray analysis of gene expression changes caused by methamphetamine revealed that cyclooxygenase-2 (COX-2) was induced along with its transcription fac...
متن کاملThe evaluation of AZ66, an optimized sigma receptor antagonist, against methamphetamine-induced dopaminergic neurotoxicity and memory impairment in mice.
Sigma (σ) receptors have recently been identified as potential targets for the development of novel therapeutics aimed at mitigating the effects of methamphetamine. Particularly, σ receptors are believed to mitigate some of the neurotoxic effects of methamphetamine through modulation of dopamine, dopamine transporters and body temperature. Furthermore, recent evidence suggests that targeting σ ...
متن کاملCurrent research on methamphetamine-induced neurotoxicity: animal models of monoamine disruption.
Methamphetamine (METH)-induced neurotoxicity is characterized by a long-lasting depletion of striatal dopamine (DA) and serotonin as well as damage to striatal dopaminergic and serotonergic nerve terminals. Several hypotheses regarding the mechanism underlying METH-induced neurotoxicity have been proposed. In particular, it is thought that endogenous DA in the striatum may play an important rol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 19 4 شماره
صفحات -
تاریخ انتشار 1999